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Abstract
The solution corresponding to each initial condition for the dispersionless KP
hierarchy can be found from the integration of a Hamilton–Jacobi equation by
means of a transformation of coordinates. The solution is explicitly determined
in a parametric form as well as a power series in a deformation parameter. In
addition, a twistor formulation of the solution is given.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

Let g be the Lie algebra of holomorphic functions f (p, x) on the domain E = D × C, for
an annulus D = {p ∈ C : r− < |p| < r+}. In this Lie algebra the commutator is given by the
Poisson bracket {f, g} = fpgx − fxgp, where fp, fx denote partial derivatives of the function
f (p, x). According to Laurent’s theorem, f (p, x) admits the representation

f (p, x) = 1

2π i

∫
C+

f (z, x)

z − p
dz − 1

2π i

∫
C−

f (z, x)

z − p
dz,

which gives rise to a decomposition of g as the direct sum of subalgebras g±, g = g+ ⊕ g−.
These are the algebras of functions in g that extend analytically, in the variable p, to zero
and infinity respectively. One has f = f+ − f−, where f+ and f− are given by the integrals
in Laurent’s decomposition and f− = 0 at p = ∞. The integrals are taken along circles
positively oriented in D,C± = {p ∈ C : |p| = r̃±} and r− < r̃− < r̃+ < r+. Now consider a
function L in g that depends on new variables t = (t2, t3, . . .), of the form

L(p, x, t) = p +
∑
j�1

uj (x, t)p−j , (1.1)

for which L+ = p,L− = −∑
j�1 uj (x, t)p−j . The Lax–Sato equations for the dispersionless

KP (dKP) hierarchy [1] are the system of differential equations

∂L

∂tj
= {Pj , L}, (1.2)
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with j = 2, 3, . . . when the positive functions Pj are given by Pj (p, x, t) = Lj |+. Since
the early works in these equations [2–8], the study of their solutions and reductions has been
pursued along a number of different lines. Among them we can cite the hydrodynamic
reductions and hodograph solutions [9–12], besides factorization methods and twistor
constructions [1] [13–16] in which we shall be mainly interested. Recently, a version of
the inverse scattering method has been applied to the construction of formal solutions for the
dKP equation [17, 18]. We pass to formulate the factorization and twistor constructions along
with a new formulation in terms of the Hamilton–Jacobi equation, which will prove useful for
the resolution of the initial-value problem of the hierarchy.

The compatibility conditions for the system (1.2) can be conveniently written as the zero-
curvature equations dω± = 1

2 {ω±, ω±} for the g-valued differential 1-forms ω+ = ∑
j�2 Pj dtj

and ω− = ∑
j�2 Nj dtj . These are the positive and negative projections of the form

ω = ∑
j�2 Lj dtj , ω = ω+ − ω−. In particular, the dKP equation

(
ut − 3

2uux

)
x

= 3
4uyy

follows for the function u = 2u1 where u1 is the coefficient of p−1 in the series for L in (1.1)
and t2 = y, t3 = t . The Lax–Sato equations can be integrated, at least formally, in the Lie group
G generated by the Hamiltonian flows acting on E through the adjoint representation. For a
given function H(p, x) ∈ g, let esH be the associated uniparametric subgroup in G. The adjoint
action on E, (p, x) → (Ad esH p, Ad esH x), is the solution (ps, xs) of the Hamilton equations
dp/ds = −Hx, dx/ds = Hp issued from (p, x) at s = 0. In particular, Ad eH = Ad esH at
s = 1. Consider now a G-valued function ψ(t) depending on the variables t = (t2, t3, . . .) and
let f (t) be given in g by the adjoint representation as f (t) = (Ad ψ(t)) f0 for f0 ∈ g. In that
situation, we can define the differential (dψ)ψ−1 by the equation df (t) = {(dψ)ψ−1, f (t)}.
As a result, the zero-curvature 1-forms ω± can be conveniently represented as the differentials
ω± = (dψ±)ψ−1

± , for functions ψ± on the time variables t. Here, the elements ψ±(t) belong
to the subgroups G± of G associated with the subalgebras g±. In that case, ψ± are the solution
of the factorization problem [1, 13, 15, 16]

et (p) esH = ψ−1
− ψ+, (1.3)

for a fixed Hamiltonian H(p, x) independent of the time variables. The new complex variable
s represents a deformation parameter and we denote by t (p) the function t (p) = ∑

j�2 tjp
j .

If we now multiply (1.3) by ψ− and take the differential of this relation at the identity, the new
variable s included, we get

(dψ−)ψ−1
− + dt (L) + dsH(L,M) = (dψ+)ψ

−1
+ , (1.4)

with L = (Ad ψ− et (p))p and M = (Ad ψ− et (p))x, which form a new pair of canonical
variables [1]. As a function of the time variables, this L proves to be a solution of the dKP
hierarchy (1.2) as a consequence of relation (1.4). In addition, we obtain the equations

∂L

∂s
= {H−, L} ,

∂M

∂s
= {H−,M} , (1.5)

which define a w1+∞-symmetry [1] of the hierarchy (1.2). Finally, if H(p, x) ∈ g−, the initial
condition for L that follows from (1.3) is

λ = L|t=0 = (Ad e−sH )p = p + sHx − s2

2
{H,Hx} + O(s3), (1.6)

while for M we observe that

µ = M|t=0 = (Ad e−sH )x = x − sHp +
s2

2
{H,Hp} + O(s3). (1.7)

The canonical pair λ,µ can be equivalently described as a solution to Hamilton’s equations
for the Hamiltonian −H(λ,µ),

dλ

ds
= ∂H

∂µ
,

dµ

ds
= −∂H

∂λ
. (1.8)
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Thus we see that to define initial conditions λ = L|t=0, for solutions (1.1) of the dKP
hierarchy (1.2), it is enough to consider negative elements

H(p, x) =
∑
j�1

Hj(x)p−j . (1.9)

Note that the collection of coefficients Hj(x) is equivalent to the coefficients uj (x) in (1.1) at
t = 0. In what follows, we assume that the flow (1.6) is defined at s = 1.

The potential dKP hierarchy appears to be naturally associated with the generating
function for the canonical transformation which takes (p, x) into the new variables (L,M).
Its description may be attained by means of a dynamical interpretation of (1.2) [1, 10, 13] as a
system of flows on the manifold E. The final result of this elaboration is the Hamilton–Jacobi
theory for the Hamiltonian H(p, x). To see that, we define � = dt (L) + dsH(L,M), with
positive part �+ = ∑

j�2 Pj dtj + dsH+ = (dψ+)ψ
−1
+ by virtue of (1.4). The zero-curvature

equation for �+ guarantees the compatibility of the Hamiltonian flows

dp + {�+, p} = 0, dx + {�+, x} = 0, (1.10)

whose solution can be depicted in terms of the factorization problem (1.3) by the formulae

p(t, s) = (
Ad ψ−1

+

)
p, x(t, s) = (

Ad ψ−1
+

)
x.

These imply for L(p(t, s), x(t, s), t, s) and M(p(t, s), x(t, s), t, s) the conditions

dL

dtj
= 0,

dM

dtj
= 0, j = 2, 3, . . . ,

and also the following equations:

dL

ds
= −{H(L,M),L}, dM

ds
= −{H(L,M),M}

as a consequence of, for instance for L, dL/ds = ∂L/∂s + {L,H+} along the flows (1.10)
and equations (1.5). Now, we shall consider the Poincaré–Cartan 1-form [19] for the system
(1.10) which is given by

dS = p dx + �+ = p dx +
∑
j�2

Pj dtj + H+ ds.

It follows from the invariance of the action that, according to the evolution we obtained for
(L,M), in these new canonical variables the Hamiltonians for the flows are zero, except for
the s-flow. Writing the differential of the action dS in both systems of coordinates, we shall
have

p dx +
∑
j�2

Pj dtj + H+ ds = −M dL + H(L,M) ds + d�.

The evolution laws for the generating function �(L, x, t, s) readily follow from this relation,

∂�

∂s
= H(L,M)|−,

∂�

∂tj
= Pj , j = 2, 3, . . . , (1.11)

which hold besides the defining equations of the canonical transformation, p = �x and
M = �L. To account for the structure of the variables (L,M), as they were previously
defined, we must have

�(L, x) = t (L) + xL + φ(L, x), (1.12)

where

φ(L, x) =
∑
j�1

φj (x)L−j ,



15044 F Guil

although the dependence on the time variables is not explicitly displayed. We assume that the
generating function � is analytical in a domain D̃ = {L ∈ C : ρ− < |L| < ρ+} and we denote
by γ± the closed curves in D̃ corresponding to C± in D under the transformation. According
to (1.12), we arrive at the relations

p = �x = L + φx(L, x), M = �L = x + t ′(L) + φL(L, x) (1.13)

that define the canonical transformation (p, x) → (L,M). Equations (1.11) for the
coefficients φj , as functions of the variables t, are the potential equations we shall write
explicitly in the following section.

The factorization problem (1.3) proves to be equivalent to the twistor equations, defining
solutions of the hierarchy around t = 0. The equivalence is obtained by means of the canonical
variables (P,X) that at each s are defined according to the formulae

P(p, x) = Ad esH p, X(p, x) = Ad esH x. (1.14)

The action on p and x of an equivalent version of (1.3), ψ− et (p) esH = ψ+, leads to the pair of
relations P(L,M) = (Ad ψ+)p,X(L,M) = (Ad ψ+)x. We deduce from these expressions
that their negative parts must vanish in each case: a condition prescribed by the twistor
equations,

P(L,M)|− = 0, X(L,M)|− = 0. (1.15)

This twistor system is capable of generating concrete solutions for certain canonical
transformations (p, x) → (P,X) [1, 15, 16]. In general, however, it becomes too implicit
as to be useful in this respect. Certainly, this is the case for the transformations defined by
a general Hamiltonian flow with Hamiltonian H(p, x) as in the factorization problem (1.3).
In this work, we shall obtain solutions to the initial-value problem for the dKP hierarchy
according to the kind of prescribed initial data under consideration. Hamiltonians of the form
(1.9) represent the initial conditions for the factorization problem (1.3) because at t = 0, the
group element ψ− coincides with the flow generated by −H,ψ−|t=0 = exp(−sH). As a
consequence of the dynamical interpretation of the Lax–Sato equations for the dKP hierarchy
we have just seen, the solution to this factorization problem can be given in terms of the
generating function � in (1.12). We shall characterize such a function � by the functional
Hamilton–Jacobi equation (2.2), the solutions of which can be represented by a Taylor’s series
whose coefficients are obtained recurrently. Nevertheless, and regarding the dKP hierarchy,
writing the initial condition for the Lax function λ = L|t=0 amounts to solving the canonical
equations (1.8) for the Hamiltonian −H . As a variant of this description, we consider the
initial conditions for the potential dKP hierarchy, given by the generating function �0 = �|t=0,
that arise as solutions of the usual Hamilton–Jacobi equation (2.4). Thus, we cannot expect
for � anything more explicit than the expression for its corresponding initial condition �0.
Even for a simple H, as expression (2.6) shows, this �0 may be quite involved. Alternatively,
as far as we are only interested in the final solutions L or � we can try to forget about H and
use instead the initial values λ or �0 respectively. As a first step in that direction, we obtain
the characterization of the function � given by formula (3.3). According to this formula, the
solution � coincides, modulo a term independent of L, with the solution of the Hamilton–
Jacobi equation for the Hamiltonian H for an arbitrarily given analytical initial condition I (L).
In this context, we can think of the coefficients Im of Taylor’s series of I (L) as a set of variables
equivalent to the times tm used to write the dKP hierarchy. In this sense, formulae (3.11) and
(3.12) represent the solution to the potential hierarchy, in a parametric form, in terms of the
variables {Im}∞m=1. The transition to a description independent of the Hamiltonian H is made
in theorem 4.1 that reformulates proposition 3.1 into the language of the generating functions.
Namely, the flow associated with H defines a monoparametric canonical transformation that



The initial-value problem for the dKP hierarchy 15045

can be equivalently described by a generating function, precisely the generating function �0

for the initial condition of the potential hierarchy. The main result of this work consists in the
characterization of the solution to the potential dKP hierarchy given by formulae (4.4), (4.5).
Considered in the twistor’s construction context, our solution makes redundant one half of the
twistor system. This connection with the twistor equations serves to compare our construction
with other known methods for the resolution of the dKP hierarchy.

The content and results of this paper are as follows. In section 2, a series for the generating
function � is given. We include here an explicit form of the equations of the potential dKP
hierarchy and construct the first two terms of the series for a concrete Hamiltonian, the
case of a rational function with a simple pole. In addition, in section 3, we are able to
obtain the solution in a simpler form by means of a coordinate transformation that makes the
content of proposition 3.1. The transformation leads to the usual Hamilton–Jacobi equation
for the Hamiltonian which is fixed by the initial condition L|t=0. Thus, we recover the
series of section 2 for the generating function and find a parametric representation, given by
equations (3.11) and (3.12), that solves the problem for the integrable hierarchy. Section 4
contains the formulation of the solution to the initial-value problem in theorem 4.1, independent
of the factorization problem. Moreover, a brief discussion on the reduction of the solution to
a finite number of variables is illustrated with an example, and finally the connection of our
construction with the twistor equations is considered.

2. The solution to the factorization problem

In this section, we assume that a Hamiltonian of the type (1.9) is given. In that case, as
explained in the previous section, the generating function � (1.12) determines a solution
for the factorization problem (1.3), the potential dKP hierarchy we shall write below, (see
equations (2.3)) and the Lax equations (1.2). Next, we study the representation of the function
� as a Taylor series in the auxiliary time s near the origin. As we shall see, this is a series
whose coefficients can be obtained recurrently by means of the first of the equations in (1.11)
once the value of � is fixed at s = 0, namely

∂�

∂s
= H(L,�L)|−, �|s=0 = xL + t (L). (2.1)

According to (1.3), this problem singles out a solution � for which the initial condition in L
is (1.6). Now we observe that, from the definition of the negative part in the variable p, it
follows that

H(L,�L)|− = 1

2π i

∫
C−

H̃ (ζ, x)

ζ − p
dζ,

where H̃ (p, x) = H(L,�L) through equations (1.13) for fixed x and the variable ζ is defined
by ζ = λ + φx(λ, x). With these conventions we denote by γ− the image of C− under the
given transformation, to write equation (2.1) for � in the following form:

∂

∂s
�(L, x) = 1

2π i

∫
γ−

H(λ,�λ)
�x,λ(λ, x)

�x(λ, x) − �x(L, x)
dλ. (2.2)

In agreement with this formula, we can determine recurrently the coefficients Fj , j = 1, 2, . . . ,

of the series:

� = t (L) + xL +
∑
j�1

sj

j !
Fj ,
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due to the analyticity of the integrand of (2.2) in the variable s at s = 0. To check the
correctness of the resulting solution and before computing any concrete example, we shall
write down the equations of the potential dKP hierarchy. Let C denote a circle positively
oriented, centered at the origin and contained in the domain D. From expression (1.12) for �

and equations (1.11), we have

d� =
∑
j�1

Lj dtj + dφ =
∑
j�1

Lj |+ dtj

if we keep s constant and include t1 = x [1] among the time variables. This implies for the
coefficients φj of φ in (1.12),∑

j�1

dφjL
−j =

∑
j�1

dtjL
j |− =

∑
j�1

dtj (L
j |+ − Lj).

By integrating in the variable p on C, after we take the product with the differentials dPk of
the positive parts Pk = Lk|+, we get the set of relations

∑
j�1

dφj

∫
C

L−j dPk = −
∑
j�1

dtj

∫
C

Lj dPk, k = 1, 2, . . . .

Integration by parts, the decomposition into positive and negative components for Lk = Pk−Nk

and the collection of equations ∂φ/∂tk = Nk for k = 1, 2, . . . lead to the set of relations

j
∂φj

∂tk
= k

∂φk

∂tj
, j, k = 1, 2, . . . ,

which show the existence of a potential, the τ -function [1], for which kφk = ∂ ln τ/∂tk, k =
1, 2, . . . . To write the remaining equations of the hierarchy we begin by considering, instead
of dPk above, the integral with dpk , the differential of the positive power pk of p,

∑
j�1

dφj

∫
C

L−j dpk = −
∑
j�1

dtj

∫
C

Lj dpk, k = 1, 2, . . . .

We now take into account the first of the equations in (1.13), so that we can use L as the new
integration variable. Then, after integration by parts and application of the residue’s theorem,
we get the set of equations

k
∂φk

∂tm
+

k−2∑
j=1

j
∂φj

∂tm
resL=0

(L + φx)
k

Lj+1
= m resL=0L

m−1(L + φx)
k, (2.3)

for k and m positive integers. At k = 1 we recover part of the equations defining the τ -function;
for k = 2, when we take the derivative with respect to x, we obtain

1

2m

∂2φ1

∂t2∂tm
= 1

m + 1

∂2φ1

∂t1∂tm+1
+

∑
a+b=m

1

2ab

∂

∂t1

(
∂φ1

∂ta

∂φ1

∂tb

)
, m = 2, 3, . . . .

In these equations, at m = 2, we have the potential dKP equation for φ1,
3
4φ1yy = (

φ1t + 3
2φ2

1x

)
x
,

which results in the dKP equation for the function u = −2φ1x .
In particular, as a simple example that illustrates most aspects of the preceding

construction, we consider the Hamiltonian

H(p, x) = h(x)

(p − a)
.
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The function h(x) is analytical at x = 0 and we assume |a| is small enough, in order for
H(p, x) to be negative in p. Equating the corresponding powers of s in the equation that
follows from (2.2) for this H, after substitution of the series for � we find at first order

F1(L, x, t) = 1

2π i

∫
γ−

H(λ, x + t ′(λ))

λ − L
dλ = −h(x + t ′(a))

L − a
,

while at second order, with the abbreviated notation h = h(x + t ′(a)), we encounter the
expression

F2(L, x, t) = − hh′

(L − a)3
− hh′′t ′′(a)

(L − a)2
− 1

2(L − a)
[(hh′′′ + h′h′′)t ′′(a)2 + (hh′′ + h′2)t ′′′(a)],

as a consequence of the residue’s theorem. These formulae define a solution for the potential
equations (2.3) up to second order in s. Concretely, the solution φ1 for the potential dKP
equation, the residue of φ = sF1 + (s2/2)F2 + O(s3) at L = 0, is found to be

φ1 = −sh − s2

4
[(hh′′′ + h′h′′)t ′′(a)2 + (hh′′ + h′2)t ′′′(a)] + O(s3).

Taking the derivative with respect to x of −2φ1 gives the solution for the dKP equation (see
supra).

Looking now at the initial condition, we observe that at t = 0 the function �0(λ, x, s) =
�|t=0 solves the equation

∂�0

∂s
= H

(
λ,�0

λ

)∣∣
−.

We denote by (λ, µ) the canonical variables (L,M) at t = 0 as in (1.6) and (1.7). But
at t = 0, the generating function takes the form �0 = λx + φ0(λ, x, s) as is seen from
(1.12). Therefore, �0

λ has no strictly positive powers of λ and the second member of the
equation for �0 results in H

(
λ,�0

λ

)∣∣
− = −H

(
λ,�0

λ

)
. Consequently, the initial condition

�0 for the generating function � in (2.1) is then the solution of the Cauchy problem for the
Hamilton–Jacobi equation for the Hamiltonian H,

∂�0

∂s
+ H

(
λ,�0

λ

) = 0, �0|s=0 = λx. (2.4)

Observe here and in what follows that the original momentum p is replaced by the coordinate λ

having the conjugate momentum µ = �0
λ. Coming back to the foregoing example we denote

by K(x) a primitive of h(x), to write the previous Hamiltonian as H(p, x) = K ′(x)/(p − a).
Then, at t = 0, the solution of Hamilton’s equations (1.8) is given by

K(µ) − K(x) = s
K ′(x)2

(p − a)2
, λ − a = (p − a)

K ′(µ)

K ′(x)
, (2.5)

when λ|s=0 = p and µ|s=0 = x as imposed by (2.4). The initial condition λ is found
by eliminating µ between equations (2.5). Regarding �0, and according to the integration
procedure exposed in the following section, we get the expression

�0(λ, x, s) = λµ − a(µ − x) − 2s
K ′(µ)

(λ − a)
. (2.6)

Here µ is defined in terms of (λ, x, s) by K(µ) = K(x) + s
K ′(µ)2

(λ−a)2 , as follows from (2.5) after
elimination of p. We see that even for a very simple Hamiltonian, as the one considered in the
example, the initial conditions cannot be written very explicitly.
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3. Hamilton–Jacobi integrability

To proceed further, we shall study the problem (2.1) in terms of the solutions of the Hamilton–
Jacobi equation for the Hamiltonian H. As we shall see, that correspondence between the
problem (2.1) and the usual Hamilton–Jacobi equation is furnished by a transformation of
coordinates. In this direction, we begin with the observation that the problem (2.1), with the
notation conventions x = t1 and

T (L) =
∑
m�1

tmLm,

can be rewritten in the following form:

∂�

∂s
+ H(L,�L) = H(L,�L)|+, �|s=0 = T (L) (3.1)

that proves to be useful in the present context.

Proposition 3.1. Let W(L, s) be the solution of

∂W

∂s
+ H(L,WL) = 0, W |s=0 = I (L), (3.2)

where I (L) is a given analytical function, I (L) = ∑
m�1 ImLm. Then, the solution � of (3.1)

can be written as

� = W + β, (3.3)

under the replacement in W of the function I (L) by an appropriate deformation I (L, t, s).
The function β compensates the term independent of L in Laurent’s series for W , since such
a term must be absent in �.

Proof. After we decompose H(L,�L) as a sum of positive and negative parts for the variable
L, we write the positive part, now in the variable p, in the form

H(L,�L)|+ = 1

2π i

∫
γ+

H(λ,�λ)

λ − L

∣∣∣∣
+

dλ = 1

2π i

∑
k�0

Lk

∣∣∣∣
+

∫
γ+

H(λ,�λ)

λk+1
dλ.

This is so because the contribution of the negative part in L of H(L,�L) to H(L,�L)|+ is
zero since L−1, as defined from (1.1), extends analytically at p = ∞. Therefore, we get the
equation

∂�

∂s
−

∑
m�1

αm

∂�

∂tm
+ H(L,�L) = α0,

for the solution � to (3.1). This follows as a consequence of (1.11), the relation p = ∂�/∂t1
of (1.13) and the definition made for the functionals on �,

αk = 1

2π i

∫
γ+

H(λ,�λ)

λk+1
dλ, k = 0, 1, 2 . . . .

The coefficients αk are viewed as functions of the coordinates (t, s), with t = (t1, t2, t3, . . .).
Now, we assign to the coordinates (t, s) near the origin the new coordinates (I, s), (t, s) →
(I, s), where I = (I1, I2, I3, . . .). Such a correspondence is defined through the solutions of

∂Ij

∂s
−

∑
m�1

αm

∂Ij

∂tm
= 0, j = 1, 2 . . .
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with Ij |s=0 = tj . The quantities Ij are then the invariants of a certain vector field that allows
us to define the new function �(L, I, s) = �(L, t, s) that satisfies the equation

∂�

∂s
+ H(L,�L) = A

with A(I, s) = α0(t, s). Observe that at s = 0, the definition made for � and the conditions
Ij |s=0 = tj imply the relation �(L, t, 0) = �(L, t, 0) = T (L). Then, in the coordinate
system (I, s) where the equation for � holds, we shall have

�(L, I, 0) = I (L).

Now, we chose the function β to compensate the trivial term A(I, s) independent of L:

β(I, s) =
∫ s

0
A(I, ξ) dξ,

that is, the solution of

∂β

∂s
= A, β|s=0 = 0.

To conclude, we define W(L, I, s) = �(L, I, s) − β(I, s) that, by virtue of the conditions on
� and β, satisfies (3.2). Since by construction �(L, I, s) = �(L, t, s), formula (3.3) is true.

�

Thus, once we solve (3.2) and replace the initial condition I (L) by the function
I (L, s) we come to the generating function �. The precise form of the transformation
I (L, s) = ∑

m�1 Im(s)Lm is determined by the positive part T (L) of the Laurent series (1.12)
for �(L, t, s) = T (L) + φ(L, t, s). To make this correspondence more explicit and to get rid
of the function β, let us take the derivative of equation (3.3) with respect to L. The positive
part of the Laurent series is then

T ′(L) = 1

2π i

∫
γ+

dλ

λ − L

d

dλ
W(λ, s). (3.4)

One can see that this formula characterizes, for small s, the function I (L, s) = T (L) +
sθ1(L) + · · · through the functional dependence of the solution W of (3.2) on the initial
condition I (L). The result follows from the power series expansion for the solution W(L, s)

of (3.2). Analogous considerations for the negative part in L of formula (3.3) imply the
representation

φ(L, t, s) = − 1

2π i

∫
γ−

dλ

λ − L
W(λ, s). (3.5)

The functional dependence of the generating function � on the time variables can be
further explained through the integration of the Hamilton–Jacobi equation (3.2). As far as
we treat the dynamical problem for the Hamiltonian H(p, x) in (1.9), the sought solution
corresponds to the canonical variables (λ, µ) = (L,M)|t=0. This follows from (1.6) and
(1.7) that at t = 0, identify ψ− with the element exp(−sH). In that case, the solution to the
initial-value problem (3.2) can be expressed in the following form [19]:

W(λ, s) = I (p) +
∫ s

0
L. (3.6)

In this formula, L represents the Lagrangian corresponding to the Hamilton function H(λ,µ)

through the Legendre transform, L = µλ̇ − H , where µ = Wλ stands for the canonically
conjugate momentum of λ. The integral is taken along an integral curve for the motion
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equations (1.8). This is the integral curve specified by the initial condition in the problem
(3.2),

λ|s=0 = p, µ|s=0 =
(

∂W |s=0

∂λ

)
λ=p

= I ′(p). (3.7)

Because H(λ,µ) does not depend explicitly on s, we shall have

W(λ, s) = I (p) − sH(p, I ′(p)) +
∫ λ

p

α, (3.8)

where the 1-form α = µ dλ must be restricted to the curve H(λ,µ) = H(p, I ′(p)). The
relationship between λ and p is fixed by the solution of the motion equations (1.8) with initial
conditions (3.7) that imply an expression for λ of the form

λ = f (p, I ′(p), s). (3.9)

As a function of the initial point p, the solution W(λ, s) given by formula (3.8) can be written
in the form

W(λ, s) = V (p, I (p), I ′(p), s). (3.10)

This is the sought functional dependence of W(λ, s) on I (p), obtained by substitution of λ as
given by (3.9) in formula (3.8).

Now, we take into account the explicit representation of λ and W(λ, s), as functions of
p, in formulae (3.9) and (3.10) respectively. Their substitution in (3.4) and (3.5) gives the
solution φ in a parametric form. This means that instead of the usual expression of φ(L, t, s)
as a function of the time variables t, we obtain both φ and t as functions of the variables I. To
compute T ′(L), we write the integrand in (3.4) in the form (λ−L)−1 dW(λ, s). Now, keeping
s fixed, we take the differential of (3.10) and express λ = f (p, I ′(p), s) in accordance to
(3.9). We finally get the formula

T ′(L) = 1

2π i

∫
C+

dp

f − L

d

dp
V, (3.11)

where we have omitted the arguments of f and V . Analogous reasoning with the formula for
the derivative of φ with respect to L that follows from (3.3) leads to the expression

∂

∂L
φ(L, t, s) = − 1

2π i

∫
C−

dp

f − L

d

dp
V. (3.12)

The relevance of these formulae manifests in the resolution of the initial-value problem for the
dKP and potential dKP hierarchies without taking explicitly into account the Hamiltonian H.
This will be the subject of the following section where concrete examples will be considered.

4. The initial-value problem

In the previous section, we have seen a method to obtain the transformation defined by
a generating function � as in (1.12) and solving the potential dKP hierarchy. In this
construction, the solution � is determined by the Hamiltonian H(p, x) which fixes the
factorization problem (1.3). Thus, the preceding construction might be interpreted as the
solution of such a factorization problem: to know the transformation ψ− in (1.3) proves to
be equivalent to knowing the generating function � in (1.12). From the point of view of the
dKP hierarchy, however, instead the Hamiltonian H(p, x) more often than not the solution is
fixed by the Lax function L(p, x, t) of (1.1) at t = 0. Equivalently, as initial data we might
define the expression for the generating function at t = 0,�0 = �|t=0. In each case, we
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have an initial-value problem: for the dKP hierarchy in terms of L|t=0 and for the potential
dKP hierarchy (2.5) with �|t=0. Equivalence among these formulations follows from the
constructions given in section 1.

Assume that the Hamiltonian H(p, x) is given and let (λ, µ) denote the canonical pair
(L,M), at t = 0, represented by the part of equations (1.6) and (1.7) given by

λ = (Ad e−sH )p, µ = (Ad e−sH )x. (4.1)

Equivalently, we can describe this canonical transformation (p, x) → (λ, µ) by means of our
generating function � in (1.12) at t = 0,�0(λ, x) = xλ + φ0(λ, x). It follows from (1.13)
that the equations

p = �0
x = λ + φ0

x(λ, x), µ = �0
λ = x + φ0

λ(λ, x) (4.2)

determine the new canonical pair from the generating function with the dependence in s
implicit in φ0. Now, let us observe that in the construction of section 3, where L is taken as an
independent variable, formulae (3.11) and (3.12) define the conjugate momentum M = �λ in
terms of initial data already known.

Theorem 4.1. The generating function �(L, t) can be reconstructed from its initial value
�0(L, x) from the equations

p = λ + φ0
x(λ, I ′(p)), �λ = I ′(p) + φ0

λ(λ, I ′(p)). (4.3)

The parametric representation for the solution � is furnished by the condition

T ′(L) = 1

2π i

∫
C+

dp

λ(p) − L

dλ

dp

[
I ′(p) + φ0

λ(λ(p), I ′(p))
]
, (4.4)

and the relation
∂

∂L
φ(L, t) = − 1

2π i

∫
C−

dp

λ(p) − L

dλ

dp

[
I ′(p) + φ0

λ(λ(p), I ′(p))
]
, (4.5)

where λ(p) is defined by the first of equations (4.3) and the function I ′(p) is as in section 3.

Proof. The relation � = W + β, which makes the content of proposition 3.1, implies that
under suitable deformations the momentum does not change, M = µ. This happens for initial
conditions, s = 0, on the curve x = I ′(p) as in equations (3.7), since by (4.1) x = µ|s=0.
Equations (4.3) are the transcription of this property into the language of the transformation
(4.2). Positive and negative parts for the Laurent series of �λ become formulae (4.4) and(4.5)
by arguments similar to those given in section 3. �

If, instead �0(λ, x), we are given the initial condition λ(p, x) for the Lax function
L(p, x, t) in (1.1),

λ = p +
∑
j�1

u0
j (x)

pj
, (4.6)

we can reconstruct the solution L(p, x, t) from the solution � determined by the theorem, an
initial condition for the generating function is

�0(λ, x) =
∫

p(λ, x) dx.

In the integrand, the momentum p(λ, x) is written as a function of λ and x after inversion of
the series (4.6). Let us consider, as an application of the theorem, the problem for the initial
condition,

�0(λ, x) = λx + s
g(x)

λ − a
,
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where g(x) is analytical at x = 0 and the simple pole a is near the origin. Also observe that the
deformation parameter s does not coincide with the additional time s used before. The invariant
function I ′(p), as in section 3, admits a series expansion I ′(p) = T ′(p) + sη(p) + O(s2). Let
R(L, p) denote the integrand in formulae (4.4), (4.5) for the present case:

R(L, p) = dλ/dp

λ(p) − L

[
I ′(p) − s

g[I ′(p)]

(λ(p) − a)2

]
,

with the function λ(p) defined by the first of the equations in (4.3),

p = λ + s
g′[I ′(p)]

λ − a
.

Since the function R(L, p) has singular points at p = a and p = L inside the disk bounded
by C+, because L may be arbitrarily close to p, by the residue’s theorem the integral in formula
(4.4) gives

T ′(L) = resp=aR(L, p) + resp=LR(L, p).

The Taylor series in s of this expression determines the coefficients of the series for I ′(p). In
particular, for the first-order term we obtain

η(p) = −g′[T ′(p)]T ′′(p)

p − a
+

g[T ′(p)] − g[T ′(a)]

(p − a)2
,

which is analytical in p even at p = a. Now taking into account the second formula, we shall
have

∂

∂L
φ(L, t) = −resp=aR(L, p)

because the only singularity that contributes to the integral is found at p = a. The Taylor
series in s gives for the coefficient φ1 of L−1 in φ(L, t), the solution of the potential dKP
equation, the following expression:

φ1 = sg[T ′(a)] +
s2

2
g′[T ′(a)]g′′[T ′(a)]T ′′(a)2 + O(s3).

Additional orders in s are computed analogously.
The question about the existence of reductions to a finite number of times t1, t2, . . . , tr+1

for the solutions studied in this work can be answered affirmatively for the following types of
initial data. Consider, for r � 2, initial values for the Lax function (4.6) of the form

λ(p, x) = p

⎛
⎝1 +

∑
j�0

p−j aj (x/pr)

⎞
⎠ .

Alternatively, suppose a generating function (1.12) for which �0 = �|t=0 is defined by

�0(L, x) = Lx

⎛
⎝1 +

∑
j�0

L−jAj (x/Lr)

⎞
⎠ ,

or that we have a Hamiltonian H as in (1.9) that is given by

H(p, x) = px
∑
j�0

p−jhj (x/pr),

for analytical coefficients aj , Aj , hj at the origin. In all three cases, one can see from formulae
(4.4) and (4.5) or (3.11) and (3.12) that the associated solutions admit the reduction of the
function I (p) to a polynomial of degree r + 1 in p, I (p) = I1p + I2p

2 + · · · + Ir+1p
r+1.
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In that case, there are exactly r + 1 nonzero parameters I1, I2, . . . , Ir+1 in the associated
solutions that correspond to the first r + 1 times that determine the finite parametrization for
the solutions. These belong to the type already studied in [15], for generating functions that
depend on x mainly through the quotient x/pr . We shall not dwell upon the general proof of
these statements. It consists in showing that λ is of the order of p, and reciprocally once we
substitute x = I ′(p) which is a polynomial in p of degree r. Instead, we shall concentrate in the
following example: let us consider for r = 2 the Hamiltonian, H(p, x) = x2/p = px(x/p2),
which should determine solutions that reduce to the three variables t1, t2, t3. To see that, we
begin with the solution to the motion equations (1.8) for −H , which leads to the following
expression (3.9) for the initial value of the Lax function λ:

λ = f (p, I ′(p), s) = p

(
1 + 3s

I ′(p)

p2

)2/3

.

A direct application of equation (3.8) yields for the action the following formula:

W(L, s) = V (p, I (p), I ′(p), s) = I (p) + s
I ′(p)2

p
,

with the notation conventions of (3.10). We are now in a position to compute the coefficients
tm by (3.11) according to the expressions

mtm = resp=0f (p, I ′(p), s)−m d

dp
V (p, I (p), I ′(p), s),

and analogously for the functions φm, we get from (3.12)

−mφm = resp=0f (p, I ′(p), s)m
d

dp
V (p, I (p), I ′(p), s),

for m = 1, 2, . . . in both cases. Until now, these formulae are valid in the general position.
At this point, we reduce I (p) to the polynomial I (p) = I1p + I2p

2 + I3p
3. In that case, our

formulae for tm give

t3 = I3

1 + 9sI3
, t2 = I2

(1 + 9sI3)2/3
, t1 = I1(1 + 9sI3) − 4sI 2

2

(1 + 9sI3)5/3

with the remaining tm = 0 for m � 4, consistent with the previous equations. The solution
φ1 to the potential dKP equation in terms of the coordinates I1, I2, I3, in the parametric form,
reads

φ1 = −16s3

3
I 4

2 (1 + 9sI3)
− 7

3 + 4s2I1I
2
2 (1 + 9sI3)

− 4
3 − sI 2

1 (1 + 9sI3)
− 1

3 ,

while, after the inversion of coordinates, we come to the formula

φ1 = −16s3

3
t4
2 (1 − 9st3)

−3 − 4s2t1t
2
2 (1 − 9st3)

−2 − st2
1 (1 − 9st3)

−1,

valid in our construction for 9|st3| < 1.
The system (4.3) may also be studied in the context of the twistor equations (1.15). We

observe that the canonical pair (P,X) in (1.14) is defined by the inverse of the transformation
(4.1), which fixes the initial conditions (λ, µ) = (L,M)|t=0. One can see that in terms of the
canonical transformation (4.2), these variables (P,X) are characterized by the equations

P = p + φ0
X(p,X), x = X + φ0

p(p,X). (4.7)

Twistor equations (1.15) are defined by means of P(L,M) and X(L,M), which in the present
case are given by the following formulae:

P = L + φ0
X(L,X), M = X + φ0

L(L,X). (4.8)
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Because X− = 0 in (1.15), we will have X = X+ and we obtain consequently

M = X+ + φ0
L(L,X+).

Thus we see that this equation is nothing else but the second of the equations (4.3) at L = λ

when we identify X+ = I ′(p). In contrast to the twistor system, in our construction this
equation is enough to determine the solution M whereas in the twistor method both L and M
must be simultaneously obtained.
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